Bose Dinstein Scholarship Test

An endeavour of International Research Scholars and Mentors with JMMC Research Foundation Sample Question for Class - 12

1. Let $f:(0,1) \rightarrow(0,1)$ be a differentiable function such that $f^{\prime}(x) \neq 0$ for all $x \in(0,1)$ and
$f\left(\frac{1}{2}\right)=\frac{\sqrt{3}}{2}$. Suppose for all $x, \lim _{t \rightarrow x}\left(\frac{\int_{0}^{t} \sqrt{1-(f(s))^{2}} d s-\int_{0}^{x} \sqrt{1-(f(s))^{2}} d s}{f(t)-f(x)}\right)=f(x)$. Then the value of $f\left(\frac{1}{4}\right)$ belongs to :
(a) $\left\{\frac{\sqrt{7}}{4}, \frac{\sqrt{15}}{4}\right\}$
(b) $\left\{\frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3}\right\}$
(c) $\left\{\frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2}\right\}$
(d) $\{\sqrt{7}, \sqrt{15}\}$
2. Evaluate $\int \frac{\left(\sqrt[3]{x+\sqrt{2-x^{2}}}\right)\left(\sqrt[6]{1-x \sqrt{2-x^{2}}}\right) d x}{\sqrt[3]{1-x^{2}}} ; x \in(0,1)$:
(a) $2^{\frac{1}{6}} x+C$
(b) $2^{\frac{1}{12}} x+C$
(c) $2^{\frac{1}{3}} x+C$
(d) None of these
3. If $\int_{0}^{1}\left(\sum_{r=1}^{2013} \frac{x}{x^{2}+r^{2}}\right)\left(\prod_{r=1}^{2013}\left(x^{2}+r^{2}\right)\right) d x=\frac{1}{2}\left[\left(\prod_{r=1}^{2013}\left(1+r^{2}\right)\right)-k^{2}\right]$ then $\mathrm{k}=$
(a) 2013
(b) 2013!
(c) 2013^{2}
(d) 2013^{2013}
4. Let $f(x)$ be differentiable function on the interval $(0, \infty)$ such that $f(1)=1$ and $\lim _{t \rightarrow x}\left(\frac{t^{3} f(x)-x^{3} f(t)}{t^{2}-x^{2}}\right)=\frac{1}{2} \forall x>0$, then $f(x)$ is
(a) $\frac{1}{4 x}+\frac{3 x^{2}}{4}$
(b) $\frac{3}{4 x}+\frac{x^{3}}{4}$
(c) $\frac{1}{4 x}+\frac{3 x^{3}}{4}$
(d) $\frac{1}{4 x^{3}}+\frac{3 x}{4}$
5. The quadratic polynomials defined on real coefficients
$p(x)=a_{1} x^{2}+2 b_{1} x+c_{1}, Q(x)=a_{2} x^{2}+2 b_{2} x+c_{2} \cdot P(x)$ and $Q(x)$ both take positive values
$\forall x \in R$. If $f(x)=a_{1} a_{2} x^{2}+b_{1} b_{2} x+c_{1} c_{2}$, then :
(a) $f(x)<0 \forall x \in R$
(b) $f(x)>0 \forall x \in R$
(c) $f(x)$ takes both positive and negative values (d) Nothing can be said about $f(x)$
6. Number of points at which the function $\begin{aligned} x & \leq 1 \text { if }-\infty<x<1 \\ x>1 \quad \text { if } x & \geq 1\end{aligned}$ is not derivable is :
(a) 0
(b) 1
(c) 2
(d) 3
$\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\sin \frac{\pi}{2 k}-\cos \frac{\pi}{2 k}-\sin \left(\frac{\pi}{2(k+2)}\right)+\cos \frac{\pi}{2(k+2)}\right)=$
(a) 0
(b) 1
(c) 2
(d) 3
7. Range of $f(x)=\sqrt{\sin \left(\log _{7}(\cos (\sin x))\right)}$ is :
(a) $[0,1)$
(b) $\{0,1\}$
(c) $\{0\}$
(d) $[1,7]$
8. Let $f: R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{cl}(x+1)^{3} & ; x \leq 1 \\ \operatorname{In} x+\left(b^{2}-3 b+10\right) & ; x>1 \text {. If } f(x) \text { is invertible, then the }\end{array}\right.$ set of all values of ' b ' is:
(a) $\{1,2\}$
(b) ϕ
(c) $\{2,5\}$
(d) None of these
